Smartphone apps within the COVID-19 pandemic

Home Latest Posts Smartphone apps within the COVID-19 pandemic
Smartphone apps within the COVID-19 pandemic
Smartphone apps within the COVID-19 pandemic

  • Johnson, N. P. & Mueller, J. Updating the accounts: world mortality of the 1918–1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76, 105–115 (2002).

  • Dong, E. Du, H. & and Gardner, L. An interactive web-based dashboard to trace COVID-19 in actual time. Lancet 20, 533–534 (2020).

  • Pei, S., Yamana, T. Ok., Kandula, S., Galanti, M. & Shaman, J. Burden and traits of COVID-19 in america throughout 2020. Nature 598, 338–341 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Kim, Y. C., Dema, B. & Reyes-Sandoval, A. COVID-19 vaccines: breaking document instances to first-in-human trials. NPJ Vaccines 5, 34 (2020).

  • Jester, B. J., Uyeki, T. M., Patel, A., Koonin, L. & Jernigan, D. B. 100 Years of medical countermeasures and pandemic influenza preparedness. Am. J. Public Well being 108, 1469–1472 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fineberg, H. V. Pandemic preparedness and response—classes from the H1N1 influenza of 2009. N. Engl. J. Med. 370, 1335–1342 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bedford, J. et al. A brand new twenty-first century science for efficient epidemic response. Nature 575, 130–136 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Whitelaw, S., Mamas, M. A., Topol, E. & Van Spall, H. G. Purposes of digital know-how in COVID-19 pandemic planning and response. Lancet Digit. Well being 2, e435–e440 (2020).

  • Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tromberg, B. J. et al. Fast scaling up of Covid-19 diagnostic testing in america—the NIH RADx initiative. N. Engl. J. Med. 383, 1071–1077 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kliff, S. & Sanger-Katz, M. Bottleneck for US coronavirus response: the fax machine. The New York Occasions (13 July 2020).

  • Mahindra, A. et al. Paper card-based vs application-based vaccine credentials: a comparability. Preprint at (2021).

  • Bates, M. Monitoring illness: digital epidemiology gives new promise in predicting outbreaks. IEEE Pulse 8, 18–22 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Brown, B., Chui, M. & Manyika, J. Are you prepared for the period of ‘big data’. McKinsey and Firm (2011).

  • Mackert, M., Mabry-Flynn, A., Champlin, S., Donovan, E. E. & Pounders, Ok. Well being literacy and well being info know-how adoption: the potential for a brand new digital divide. J. Med. Web Res. 18, e264 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bol, N., Helberger, N. & Weert, J. C. Variations in cellular well being app use: a supply of recent digital inequalities? Inf. Soc. 34, 183–193 (2018).

    Article 

    Google Scholar 

  • Brewer, L. C. et al. Again to the long run: attaining well being fairness via well being informatics and digital well being. JMIR mHealth uHealth 8, e14512 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Worth, W. N. & Cohen, I. G. Privateness within the age of medical massive information. Nat. Med. 25, 37–43 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Landau, S. Digital publicity instruments: design for privateness, efficacy, and fairness apps can lower transmission of SARS-CoV-2—however how can we be certain that they don’t exacerbate public well being inequities? Science 373, 1202–1204 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, D. et al. Scientific traits of 138 hospitalized sufferers with 2019 novel coronavirus–contaminated pneumonia in Wuhan, China. JAMA 323, 1061–1069 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guan, W.-j et al. Scientific traits of coronavirus illness 2019 in China. N. Engl. J. Med. 382, 1708–1720 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Radin, J. M., Wineinger, N. E., Topol, E. J. & Steinhubl, S. R. Harnessing wearable gadget information to enhance state-level real-time surveillance of influenza-like sickness within the USA: a population-based research. Lancet Digit. Well being 2, e85–e93 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quer, G. et al. Wearable sensor information and self-reported signs for COVID-19 detection. Nat. Med. 27, 73–77 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ferretti, L. et al. Quantifying SARS-CoV-2 transmission suggests epidemic management with digital contact tracing. Science 368, eabb6936 (2020).

  • Yang, S., Santillana, N. & Kou, S. C. Correct estimation of influenza epidemics utilizing Google search information through ARGO. Proc. Natl Acad. Sci. USA 112, 14463–14478 (2015).

    Google Scholar 

  • Meyers, D. J. et al. Combining healthcare-based and participatory approaches to surveillance: developments in diarrheal and respiratory circumstances collected by a cell phone system by neighborhood well being staff in rural Nepal. PLoS ONE 11, e0152738 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Smolinski, M. S. et al. Flu close to you: crowdsourced symptom reporting spanning 2 influenza seasons. Am. J. Public Well being 105, 2124–2130 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guerrisi, C. et al. Participatory syndromic surveillance of influenza in Europe. J. Infect. Dis. 214, S386–S392 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Wójcik, O. P., Brownstein, J. S., Chunara, R. & Johansson, M. A. Public well being for the folks: participatory infectious illness surveillance within the digital age. Emerg. Themes Epidemiol. 11, 7 (2014).

  • Leal-Neto, O., Santos, F., Lee, J. Y., Albuquerque, J. & Souza, W. V. Prioritizing COVID-19 exams based mostly on participatory surveillance and spatial scanning. Int. J. Med. Inform. 143, 104263 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leal-Neto, O. et al. Digital SARS-CoV-2 detection amongst hospital staff: participatory surveillance research. JMIR Public Well being Surveill. 7, e33576 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sudre, C. H. et al. Anosmia, ageusia, and different COVID-19-like signs in affiliation with a constructive SARS-CoV-2 take a look at, throughout six nationwide digital surveillance platforms: an observational research. Lancet Digit. Well being 3, e577–e586 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cook dinner, S., Conrad, C., Fowlkes, A. L. & Mohebbi, M. H. Assessing Google flu developments efficiency in america in the course of the 2009 influenza virus A (H1N1) pandemic. PLoS ONE 6, e23610 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Freifeld, C. C., Mandl, Ok. D., Reis, B. Y. & Brownstein, J. S. HealthMap: world infectious illness monitoring via automated classification and visualization of Web media experiences. J. Am. Med. Inform. Assoc. 15, 150–157 (2008).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hossain, N. & Househ, M. S. Utilizing HealthMap to analyse Center East respiratory syndrome (MERS) information. Stud. Well being Technol. Inform. 226, 213–216 (2016).

  • Chamberlain, S. D. et al. Actual-time detection of COVID-19 epicenters inside america utilizing a community of good thermometers. Preprint at medRxiv (2020).

  • Miller, A. C., Peterson, R. A., Singh, I., Pilewski, S. & Polgreen, P. M. Bettering state-level influenza surveillance byincorporating real-time smartphone-connected thermometer readings throughout totally different geographic domains. Open Discussion board Infect. Dis. 6, ofz455 (2019).

    Article 

    Google Scholar 

  • Miller, A. C., Singh, I., Koehler, E. & Polgreen, P. M. A smartphone-driven thermometer software for real-time population-and individual-level influenza surveillance. Clin. Infect. Dis. 67, 388–397 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Brueck, H. Florida is wanting like the subsequent main US hotspot of COVID-19, in line with a strikingly correct thermometer map that reveals the place circumstances could surge subsequent. Enterprise Insider (2020).

  • Gangavarapu, Ok. et al. Outbreak.information genomic experiences: scalable and dynamic surveillance of SARS-CoV-2 variants and mutations. Preprint at medRxiv (2022).

  • Lazer, D., Kennedy, R., King, G. & Vespignani, A. The parable of Google Flu: traps in massive information evaluation. Science 343, 1203–1205 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • SAFER-COVID: A protected return to day by day actions. CareEvolution (2020).

  • Liang, F. COVID-19 and well being code: how digital platforms sort out the pandemic in China. Soc. Media Soc. 6, 2056305120947657 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vespignani, A. et al. Modelling Covid-19. Nat. Rev. Phys. 2, 279–281 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Behnam, M., Dey, A., Gambell, T. & Talwar, V. COVID-19: overcoming provide shortages for diagnostic testing. McKinsey and Firm (2020).

  • Loclainn, M.N. et al. Key predictors of attending hospital with COVID19: an affiliation research from the COVID symptom Tracker APP in 2,618,948 particular person. Preprint at medRxiv (2020).

  • Menni, C. et al. Actual-time monitoring of self-reported signs to foretell potential COVID-19. Nat. Med. 26, 1037–1040 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • COVID-19 App (Apple, 2020).

  • Li, X. et al. Digital well being: monitoring physiomes and exercise utilizing wearable biosensors reveals helpful health-related info. PLoS Biol. 15, e2001402 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Scripps Analysis Translational Institute. DETECT (2020).

  • Gadaleta, M. et al. Passive detection of COVID-19 with wearable sensors and explainable machine studying algorithms. NPJ Digit. Med. 4, 166 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Radin, J. M. et al. Evaluation of extended physiological and behavioral adjustments related to COVID-19 an infection. JAMA Netw. Open 4, e2115959 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Quer, G. et al. Inter-individual variation in goal measure of reactogenicity following COVID-19 vaccination through smartwatches and health bands. NPJ Dig. Med. 5, 49 (2022).

    Article 

    Google Scholar 

  • Stanford Healthcare Innovation Lab. Infectious Illness and COVID-19 Wearables Research (2019).

  • Natarajan, A., Su, H.-W. & Heneghan, C. Evaluation of physiological indicators related to COVID-19 measured utilizing wearable units. NPJ Digit. Med. 3, 156 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Mishra, T. et al. Pre-symptomatic detection of COVID-19 from smartwatch information. Nat. Biomed. Eng. 4, 1208–1220 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alavi, A. et al. Actual-time alerting system for COVID-19 and different stress occasions utilizing wearable information. Nat. Med. 28, 175–184 (2022).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Robert Koch Institut. Corona Datenspende (2020).

  • Miller, D. J. et al. Analyzing adjustments in respiratory fee to foretell the chance of COVID-19 an infection. PLoS ONE 15, e0243693 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shapiro, A. et al. Characterizing COVID-19 and influenza sicknesses in the true world through person-generated well being information. Patterns 2, 100188 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Brakenhoff, T. B. et al. A potential, randomized, single-blinded, crossover trial to research the impact of a wearable gadget along with a day by day symptom diary for the distant early detection of SARS-CoV-2 infections (COVID-RED): a structured abstract of a research protocol for a randomized managed trial. Trials 22, 412 (2021).

  • Martinez‐Jimenez, M. A. et al. Diagnostic accuracy of infrared thermal imaging for detecting COVID‐19 an infection in minimally symptomatic sufferers. Eur. J. Clin. Make investments. 51, e13474 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Nguyen, P. Q. et al. Wearable supplies with embedded artificial biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

  • Kahn, J. P. Digital Contact Tracing for Pandemic Response: Ethics and Governance Steerage (Johns Hopkins Univ. Press, 2020).

  • Budd, J. et al. Digital applied sciences within the public-health response to COVID-19. Nat. Med. 26, 1183–1192 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, J. T., Leung, Ok. & Leung, G. M. Nowcasting and forecasting the potential home and worldwide unfold of the 2019-nCoV outbreak originating in Wuhan, China: a modelling research. Lancet 395, 689–697 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Park, S., Choi, G. J. & Ko, H. Info know-how–based mostly tracing technique in response to COVID-19 in South Korea—privateness controversies. JAMA 323, 2129–2130 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wang, C. J., Ng, C. Y. & Brook, R. H. Response to COVID-19 in Taiwan: massive information analytics, new know-how, and proactive testing. JAMA 323, 1341–1342 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Colizza, V. et al. Time to guage COVID-19 contact-tracing apps. Nat. Med. 27, 361–362 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Apple. Apple and Google associate on COVID-19 contact tracing know-how. Apple (2020).

  • Arevalo, F. N. Decoding the general public curiosity of Aarogya Setu, contact tracing app for managing the COVID-19 pandemic in India. In Proc. 2020 IEEE Worldwide Symposium on Know-how and Society (ISTAS) 508–512 (IEEE, 2020).

  • Aravindan, A. & Phartiyal, S. Bluetooth cellphone apps for monitoring COVID-19 present modest early outcomes. (2020).

  • Probyn, A. Coronavirus lockdowns may finish in months if Australians are prepared to have their actions monitored. ABC (2020).

  • Morley, J., Cowls, J., Taddeo, M. & Floridi, L. Moral pointers for COVID-19 tracing apps. Nature 582, 29–31 (2020).

  • Grande, D. et al. Shopper views on utilizing digital information for COVID-19 management in america. JAMA Netw. Open 4, e2110918 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bahrain, Kuwait and Norway contact tracing apps amongst most harmful for privateness. Amnesty Worldwide (2020).

  • Hidayat-ur-Rehman, I., Ahmad, A., Ahmed, M. & Alam, A. Cellular purposes to struggle towards COVID-19 pandemic: the case of Saudi Arabia. TEM J. 10, 69–77 (2021).

  • Wymant, C. et al. The epidemiological influence of the NHS COVID-19 App. Nature 594, 408–412 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Menges, D., Aschmann, H. E., Moser, A., Althaus, C. L. & Von Wyl, V. An information-driven simulation of the publicity notification cascade for digital contact tracing of SARS-CoV-2 in Zurich, Switzerland. JAMA Netw. Open 4, e218184 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ladyzhets, B. We investigated whether or not digital contact tracing truly labored within the US. Know-how Overview (2021).

  • Steinhauer, J. & Goodenough. A. Contact tracing is failing in lots of states. Right here’s why. The New York Occasions (31 July 2020).

  • O’Neill, P. H. No, coronavirus apps don’t want 60% adoption to be efficient. Know-how Overview (2020).

  • Rüdiger, S. et al. Predicting the SARS-CoV-2 efficient replica quantity utilizing bulk contact information from cellphones. Proc. Natl Acad. Sci. USA 118, e2026731118 (2021).

  • Krieg, S. J. et al. Information-driven testing program improves detection of COVID-19 circumstances and reduces neighborhood transmission. NPJ Digit. Med. 5, 17 (2022).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sharma, T. & Bashir, M. Use of apps within the COVID-19 response and the lack of privateness safety. Nat. Med. 26, 1165–1167 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gasser, U., Ienca, M., Scheibner, J., Sleigh, J. & Vayena, E. Digital instruments towards COVID-19: taxonomy, moral challenges, and navigation support. Lancet Digit. Well being 2, e425–e434 (2020).

  • Ting, D. S. W., Carin, L., Dzau, V. & Wong, T. Y. Digital know-how and COVID-19. Nat. Med. 26, 459–461 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rimmer, A. Sixty seconds on… the pingdemic. BMJ 374, 1822 (2021).

  • Mina, M. J. & Andersen, Ok. G. COVID-19 testing: one dimension doesn’t match all. Science 371, 126–127 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dror, A. A. et al. Vaccine hesitancy: the subsequent problem within the struggle towards COVID-19. Eur. J. Epidemiol. 35, 775–779 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Geneviève, L. D. et al. Participatory illness surveillance techniques: moral framework. J. Med. Web Res. 21, e12273 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published.